Railway Control Syste

Wy

i
]

Gustav Zickert <gustav.zickert@prover.com>
Nikitas Stathatos
RSSRail2023

PREBEVER

Outline

* Background & problem statement

— Generic Applications (GA) and Specific Applications (SA)
— Formal verification of SAs and GAs
— Software Product Lines (SPL)

* Proposed Method to bridge the gap between SA and GA verification

— Halfway Generic Verification (HGV)
* Supports development/debugging of the generic design of a GA
* Bonus benefit: also supports exploration of static properties of conf data

* Prototype implementation

PREBEVER

Backg rou nd Formal verification of SAs and GAs

Software Product Lines

PREBEVER

Standard development phases: From GA to SA

» GA: Generic specifications for a family of systems common signaling
principles
— Object Model

* Generic objects (classes); inputs, outputs, internal states, and static relations. G

— Design Specification
* Generic logic for code generation

— Test Specification
* Generic test cases

— Safety Specification

* Generic safety requirements for formal verification

» SA: Individual signaling system that is associated with a combination of

a GA and some compatible configuration data S

* In code generation projects, SA source code is generated from a GDS
and configuration data (track layout, route tables, etc.)

PREBEVER

Example of a FV approach at SA level, based on Model Checking

Specific Application (SA) Generic Application (GA)

Formal System Model = < Formal Safety Requirements

OR

Safety requirements are all

L nter-example
satisfied Cou examp

PREBEVER

Formal Verification of a GA

* It desirable to have an early assessment at GA level
— Reducing the amount of effort required for the assessment of each SA

— This requires finding issues as early as possible
* E.g., the GDS may fail to fulfill the GSS for certain configuration data

» We think that FV is beneficial for assessment of signaling system logic
» FV work in signaling is traditionally done at SA level

* Challenges with applying FV to GAs
— To directly apply Model Checking at GA level would require a model of all configuration
* Such a model might not be readily available, or be very large
— Interactive proof engines typically requires some manual work by experts

Software Product Lines

PREBEVER

« A Software Product Line (SPL) is a
family of similar software products.

* Variability described in terms of

features.

— Each feature is present in some subset of the
SPL.

* Note: A family of computerized
signaling systems corresponding to a

given GA may be considered as a SPL.

SPL

SPL member

PREBEVER

FV of Software Product Lines, cont.

« Configuration lifting, a.k.a. variability encoding:
« Encode features using Boolean feature variables

 Semantics: feature variable is True if the feature is present in some possible
product.

* Leads to metaproduct/metamodel capable of simultaneously simulating all
products of the SPL

* FV of metaproduct against the corresponding metaspecifications
— In effect one verifies all products of the SPL.

PREBEVER

Halfway Generic
Verification

PREBEVER

Halfway Generic Verification (HGV)

» Formal SPL analysis applied to a family of railway control system SAs,

originating from the same GDS
— Adding feature variables to represent presence of physical and abstract objects in the
railyard

* Supports development of GDS and GSS

» Supports the exploration of properties of conf data

PREBEVER

Overview of the HGV framework

* Input: GA, = (OM,, GDS;, GSS;) and configuration data C..
* Three-step recipe for transforming (GA;, C) 2 (GA,, C,) :

1. Introduce new “potential” object classes to the OM.

— Each such potential object class inherits properties from some object class already present in OM,, but
additionally has a special Boolean feature variable Exists.

2. Align the OM, GDS and GSS with the modifications introduced in the first
step.

— Restrict the scope of any quantification that appears in any expression in the GA to existent objects.

3. Replace some (user specified) object instances in C; with corresponding
potential object instances.

PREBEVER

Examp|e , Prototype implementation using Prover iLock

12

PREBEVER

Prover iLock - “cockpit” for Signaling Design Automation e

207th [MYCT dev] - ProveriLack = [m] x

Settings Help

n Toals
MELD TSR

g

Eile Edit ¥ Layout Desi
ODBEEC & e &

* Main functionality
— Graphical layout editor
— Data import/export
— Simulator
— Veritier
— Coder

PREBEVER

Toy interlocking model

* Input Object Model OM,
— SIGNAL,
— ROUTE,
— PROTECTION_AREA,
— SWITCH,
— BALISE,

* Potential (or variable) object types
— VAR_SIGNAL,
— VAR_BALISE,
— VAR_ROUTE,
— VAR_ PROTECTION_AREA

14

PREBEVER

Transformation of Generic Design (GDS)

* Original equation in GDS; * Transformed equation in GDS,
CommandedProceed := CommandedProceed :=
SOME rt (

SOME rt (

start signal (rt, SELF) & rt.ex1st &
ready to proceed(rt) start signal(rt, SELF) &

) ; ready to proceed(rt)
) i

PREBEVER

Transformation of Generic Safety (GSS)

« Original requirement in GSS, . Transfqrmed requirement in GSS
ALL si ALL-Sl F
si.exists ->
ALL rt ALL rt (
ALL rts (rt.exists ->
CommandedProceed (si) & ALL rts %.d d(si)

: - CommandedProceed (si) &
start_signal(rt, si) & start signal(rt, si) &
set (rt) & set (rt) &
route sections(rt, rts) -> route sections(rt, rts) ->

ALL tc (ALL tc (
tracks(rts, tc) ->
tracks (rts, tc) ->

Clear (tc)
Clear (tc))

PREBEVER

HGV for dynamic requirements

Constraints on variable objects:
— All possible combinations of VAR_SIGNAL and VAR_BALISE were analyzed.
— VAR_ROUTE and VAR_PROTECTION_AREA were defined in terms of existence of VAR_SIGNAL instances

* A route was defined to exist between two existing co-direct signals iff there is no other existing co-direct signal in-between them
* A protection area was defined to exist if all protected and protective signals exist

We then performed model checking of the metamodel against the metaspecifications

In effect, the original generic design GDS, was verified against the GSS, for all SAs that may be
obtained by including or not including each instance of VAR_SIGNAL and VAR_BALISE.

The prototype layout had 29 instances of those two object classes.

Hence, this corresponds to the simultaneous verification of 2429 ~ 5 x 1078 systems

PREBEVER

Bonus app"cation , HGV for conf data checking

18

PREBEVER

Bonus application: HGV for conf data checking

* Constraints () and Requirements (req)
— C1: All switches have a balise.

— C2: All routes that do not contain any switch contain

a track circuit with a balise.
— RegO0: All routes pass over some balise.

+ Constraint consistency requirements

— Reqgl: There is no config satisfying C1 and C2.
* Falsified

* Requirements of type “C -> Regq”
— Reqg2: C1 implies Reg0.
* Falsified

— Req3: C1 and C2 together imply Req0
* Valid

T21

S09W S

sw3 T24
£l

T26 T1
S06W
s7
' K

sw? 19 T22

Counterexample to Reg?2

PREBEVER

Conclusion and Outlook

* Verification at a generic level is desirable, but could be challenging
« HGV offers a way to formally verity a finite, but large set of systems

* We plan to further develop the method and explore its usefulness in practice
to get an GA level assessment

20

