=
—
—

W

Automated Compositional Verification of Interlocking
Systems

Anne E. Haxthausen?, Alessandro Fantechi2, Gloria Gori2, Oli Karason Mikkelsen!,
and Sofie-Amalie Petersen!

1 DTU Compute, Technical University of Denmark

2 DINFO, University of Florence

UNIVERSITA A

DEGLI STUDI = (As) 8 |

FIRENZE f(x+Ax):Z — f(z)(x) [/
: 1.
i=0

DIPARTIMENTO DI

INGEGNERIA

DELL'INFORMAZIONE

DTU Compute
Department of Applied Mathematics and Computer Science

W

Outline

1. Introduction

2. Compositional Verification

3. A Strategy for Automated Decomposition

4. Formal Specification and Implementation of a Decomposer

5. Experimental Results

6. Conclusions

2 October 2023

Principles of Interlocking Systems

Traffic control center

;’ ””””””””””””””” $ route requests

=
—
—

W

Interlocking Controller

Route —
: i Train
I—ﬂ . Linear section 4 (S\:;:]rrt\l:; %etethion
| 4 ections
Point IE—K nJ

® The task of an interlocking system IXL is to ensure safe routing of trains in the
railway network under its control.

e safe = no collisions WX and no derailments — %

—

® Tracks are divided into train detection sections.
® |XL reserves routes for exclusive use by a single train.

activate) .
- : Trains

® |XL switches and locks points in correct positions for routes when reserving them.

® |XL uses (virtual) signals to regulate the train access to sections.

October 2023

DTU
The Challenge of Model Checking Large Interlockings =

® Interlockings are safety-critical systems (SIL4).
® CENELEC 50128 strongly recommends formal verification for SIL4 software.
® Model checking has raised interest as it is fully automated.

® However, for large interlocking systems it typically incurs in state space explosion
making it infeasible to reach a verification result.

® “[arge”is often referred to the number of physical elements in the track layout and to
the number of routes that are defined on the track layout.

October 2023

 w—)
q
c

Can Compositional Verification be Used?

W

® Can we address the verification challenge by decomposing the interlocking logic of
large layouts into separate, more manageable, parts, so that proving safety of the

”””””””””” E8 E26
r" t it i it 3 1t it it |
\ , Ly t7 11 16 Lgy T19
| / E1 E19
\ /
\ ,.’ . E10 / E24
Astation } 55 o6 T o8 { Bstation | M " i " " M N
/ | T Oy t5 T o az T15 8 !
! | o E2 E17
,. >< 0 22
)

® To answer this, we have developed a compositional method and implemented it for
the RobustRailS interlocking verification environment.

5 October 2023

RobustRailS Tool Chain for Interlocking Verification'

mb20

B

mb12 ol

up
rrrrrrr >

mb1s

olgy mo T om Lggas uaLdEn%A"
mb10 mb13 mb14
(0) . —
possible human manipulation
generator

route | from to path points markerboards conflicts
la mbl0 [mbl3 t10;611;612 | t11:4+;613:- mbl1l;mb12;mb20 1b;2a;2b;3;4;5a;5b;6b;7
7 mb20 | mbll t11;t10 t11:- mb10;mb12 la;1b;2a;2b;3;5b;6a
8 mb21 mbl4 | t13;t14 t13:- mb13;mbl5 1b;2a;4;5a;5b;6a;6b

(1)

static checker

The method and tools were developed by Anne Haxthausen, Jan Peleska, and Linh H. Vu in collaboration with

—_—

generic model

|

(2.1)
generator

f

generic safety
requirements

model

safety
requirements

(2.2)
model checker

the Danish railways in the RobustRailS project, 2012-2017, http://www.robustrails.man.dtu.dk/

6

 w—)
q
c

W

October 2023

A Method for Compositional Verification

plolgy o tl uz Ly us ! t14|_nI b14 Bolgy o t1 12
mb10 mol3 mb14 mo1d
mb02 mb0d
lgy Ly o
me01 mb03

 w—)
q
c

W

1. Decompose the network into n sub-networks by applying n» — 1 valid network cuts.

2. Verify each sub-network using the RobustRailS tools verification steps.

This method is sound and complete:

Haxthausen & Fantechi. Compositional verification of railway interlocking systems. FAC 35 (1), 2023

7

October 2023

Valid Network Cuts

A cut is valid if:

® it divides the network into exactly two parts
Cut

Cluster Cut

—————

® no route is divided into more than two parts

s1 : s3

Gl r? L1 " Pl " L13 ﬂ - P3 " L3 ‘I_? G3
B 7/__ S\ 5
S2 N\ sS4
G2 " L2 " — " L24 1| F:4\ " L4 r? G4
® no flank protecting elements are separated by the cut from the sections they protect
I "
a3 /
' uonlgﬁII t11 L mn';)gl

w—
q
=

W

October 2023

Decomposition by Applying a Valid Cut

Cut
i i I}
tl t2
N, N,
Sentry, Sexit,
tl |_“n bl HF b2 |1'=n t2
Sexit; Sentry,

 w—)
q
c

W

October 2023

A Strategy for Automated Decomposition

Question:
® \Which cuts should be made?

Solution Idea:
® Provide a library of pre-verified, elementary networks.
® Devise an algorithm for decomposing a network into elementary sub-networks.

10

=
—
—

W

October 2023

Elementary Networks

A sequence of any number of intermediate
linears can be added here, with no marker boards

optional

A sequence of any number of intermediate
linears can be added here, with no marker boards

N\

t5

te 1

T/

11

t3

S 54

ta 1

=
—
=

W

October 2023

 w—)
q
c

n Ll n . .
]
X I vai-bl -
u
o
Acuso3
" 803 2 AB93
FU11 AU893
AU593 Lu11 cull ECU11
asos [533 @ pmoww 083 , PMO3U 802 =
i i Y ETTTR it i
AXU533 TXU11 EULl
AXU594 LXU11l pcull Acusoa
Ases B 534 = . 801) N 804 B asos
o i it vica o
AU534 DU11 GUl1 AU8B94
cutl
| ACU803
. 803 o AB93
FUl1 AUB93
AU593 Lu11 cu11 cu1l ECU11l
Asos @ 533 & pvow 083 @ os3p o083 [PMo2U_ex stem PMO3U 802 @
i i o o i o550 i i
AXU533 TXUll mb_entry_083 mb_exit_PM02U_ex_stem EU11
AXU594 LXU11 DCU11l ACus04
A594 = 534 & . 801 = . 804 = AB94
o i | i Foa il o
AU534 DU11 GU11 AU894
2
|
cut2
ACU803 |
. 803 n AB93
FUl1 AUB93
cull mb_exit_PM02U_ex_plus | mb_entry_PMO3U_ex_stem ECUl11l
083 [9 PMO02U_ex_stem " PMO02U_ex_plus *4 PMO2U_ex_plus_b PMO3U_ex_stem_b[*4 PMO3U_ex_stem =~ PMO3U 802
i s i i
mb_exit_ PM02U_ex_stem mb_entry_PM02U_ex_plus mb_exit_PM03U_ex_stem EU1l
DCU11 ACu804
. 801 & . 804 = AB94
| 2 PM04U UJ
Nz DU11 GU11 AUB94
|
cut3
mb_entry_PMO03U_ex_stem ECU11 ECU11
PMO3U_ex_stem_b[24 PMO3U_ex_stem =~ PMO3U 802 [g 802_b | 802 [? PM04U_ex_minus
it it it it it it
mb_exit_ PM03U_ex_stem EUl1ll mb_entry_802 | mb_exit_PM04U_ex_minus
DCU11 DCU11l ACU804
- 801 @ so1b | sor & pmosuexplus - AB94
it i it o500 ﬁ] i
DU11l mb_entry_801 | mb_exit_PM04U_ex_plus GU11 AU894
12 October 2023

Cuts Found when Searching from Different Borders

From G1: invalid cut

> s1
G1 I_u L1

...................... A/ A
S2
_(_3__2 | 1L L2 1L 1L L24 1L
L 4 ir L1}

G4

G [u -

G4

13

 w—)
q
c

W

October 2023

Decomposability

A network containing a loop:

e E el

(9]
N
[1)]
N
—
N

® This network can’t be decomposed into elementary networks.

Conjecture:
® For any network N: if N is loop-free and no flank protection is adopted,
decomposition results in elementary networks N1, ..., N,

— no model checking is needed.

14

w—
ﬁ
=

W

October 2023

Specification & Implementation of a Decomposer Tool =

® Formal RSL specification of a decomposer algorithm.

® C++ implementation.

decompose : NetworkLayout x Secld x Secld-set —
NetworkLayout-set x NetworkLayout-set
decompose(N, b, bs) =
let cutset = find cuts(N,b) in
if cutset = { {} } means N is elementary
then ({N}, {})
elsif cutset = {} means N is unbreakable from b
then try to search from another border
if bs = {} then ({}, {N}) no other borders to search from
else let b2 « b2 € bs in
decompose(N, b2, bs | {b2})

end

search from border b2

end
elsif card cutset = 1
then
let
ccut * ccut € cutset,
(N1, N2) = divide(N, ccut)

found one non empty cluster cut

ccut is the found cluster set
divide N into two nets N1 and N2
ccut is defined s.t. N1 becomes elementary
added borders = ..., set of borders added to N2 during division
b2 « b2 € added borders,
(e_ns,u_ns) =
decompose(N2, b2, (bs N borders(N2)) U added borders\, {h2})
in
({N1} Ue_ns, u_ns)
end
found two cluster cuts having one single cut each
see text for explanation of what is then done

else

end
end

find _cuts : NetworkLayout x Secld — ClusterCut-set
find_cuts(N, b) =
let

dir = find_direction_towards_neighbor _of border(b, N),
1 = next_from_linear(b, dir, N) l is the neighbor of b
in
find cuts from linear(l, dir, N)
end,

find _cuts_from linear : Secld x Direction x NetworkLayout — ClusterCut-set
find cuts from linear(l, dir, N) =
let next = next from linear(l, dir, N) in
if is_linear(next, N)
then
if is_border(next, N) then {{}} case 2(a)
elsif has signal(l, dir, N) V has signal(next, opposite direction(dir), N)

next section to visit

then { { (I , next) } } case 2(b)
else no signals between | and next
find_cuts_from_linear(next, dir, N) continue search from next
end

else is_point(next, N), i.e. case 2(c)

further search depends on from which side the point is met:
case get pointend entry given neighbor(next, I, N) of
STEM — find cuts from stem(next, dir, N),
PLUS — find_cuts_from branch(next, dir, PLUS, N),
MINUS — find_cuts_from_branch(next, dir, MINUS, N)
end
end if
end let

15

October 2023

 w—)
#
c

Il - o
EXpeI‘Imenta| ReSU |tS =« applying RR-T model checker and RSL & C++ decomposers z

z\ i EEM . J:“’w &,-ff ;) g L

O W F T e, = T i ah AR

/ o RoOT\E * { . of "

7 . 5 o b I = EJ - “"?a“m £ :'"’F Ca— w.ym "”wlnl £ nf”ra
xiole £ T

Number of Elements Execution Time in seconds Number of Sub-Nets
Network Linears Points Signals Routes RR-T RSL C++ Elementary
EDL line (DK) 111 39 126 179 22863 219 1,5 68
Leval-Binche (B) 11 4 18 18 91 7 0,5 4
Piéton (B) 26 12 42 48 49813 9 0,5 13
Tramway Line (1) 22 12 20 62 43184 8 0,5 12
Flying Junction 24 16 16 40 62172 9 0,7 16

16

October 2023

=
—
=

Conclusions

Contributions

® a sound and complete method for compositional verification

W

® a library of verified, elementary networks

¢ formally specified and implemented a tool for automated decomposition:

® decomposes a network N into sub-networks Ny, ..., N

® conjecture: if NV is loop-free & no flank protection, Ny, ..., N, are elementary
— no model checking is needed

® experiments: execution time of decomposer is a very small fraction of that for
model checking

y

® prove correctness of the decompose algorithm
® prove the conjecture

® extend decomposer to also handle flank protection

® study the applicability of our approach to other verification frameworks and tools

17 October 2023

