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Principles of Interlocking Systems

Traffic control center
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® The task of an interlocking system IXL is to ensure safe routing of trains in the
railway network under its control.

e safe = no collisions WX and no derailments — %

—

® Tracks are divided into train detection sections.
® |XL reserves routes for exclusive use by a single train.

activate) .
- : Trains

® |XL switches and locks points in correct positions for routes when reserving them.

® |XL uses (virtual) signals to regulate the train access to sections.
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DTU
The Challenge of Model Checking Large Interlockings =

® Interlockings are safety-critical systems (SIL4).
® CENELEC 50128 strongly recommends formal verification for SIL4 software.
® Model checking has raised interest as it is fully automated.

® However, for large interlocking systems it typically incurs in state space explosion
making it infeasible to reach a verification result.

® “[arge”is often referred to the number of physical elements in the track layout and to
the number of routes that are defined on the track layout.
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Can Compositional Verification be Used?

W

® Can we address the verification challenge by decomposing the interlocking logic of
large layouts into separate, more manageable, parts, so that proving safety of the
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® To answer this, we have developed a compositional method and implemented it for
the RobustRailS interlocking verification environment.
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RobustRailS Tool Chain for Interlocking Verification'
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The method and tools were developed by Anne Haxthausen, Jan Peleska, and Linh H. Vu in collaboration with
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the Danish railways in the RobustRailS project, 2012-2017, http://www.robustrails.man.dtu.dk/
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A Method for Compositional Verification
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1. Decompose the network into n sub-networks by applying n» — 1 valid network cuts.

2. Verify each sub-network using the RobustRailS tools verification steps.

This method is sound and complete:

Haxthausen & Fantechi. Compositional verification of railway interlocking systems. FAC 35 (1), 2023
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Valid Network Cuts

A cut is valid if:

® it divides the network into exactly two parts
Cut

Cluster Cut

—————

® no route is divided into more than two parts
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Decomposition by Applying a Valid Cut
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A Strategy for Automated Decomposition

Question:
® \Which cuts should be made?

Solution Idea:
® Provide a library of pre-verified, elementary networks.
® Devise an algorithm for decomposing a network into elementary sub-networks.
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Elementary Networks

A sequence of any number of intermediate
linears can be added here, with no marker boards

optional

A sequence of any number of intermediate
linears can be added here, with no marker boards
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Cuts Found when Searching from Different Borders

From G1: invalid cut
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Decomposability

A network containing a loop:
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® This network can’t be decomposed into elementary networks.

Conjecture:
® For any network N: if N is loop-free and no flank protection is adopted,
decomposition results in elementary networks N1, ..., N,

— no model checking is needed.
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Specification & Implementation of a Decomposer Tool =

® Formal RSL specification of a decomposer algorithm.

® C++ implementation.

decompose : NetworkLayout x Secld x Secld-set —
NetworkLayout-set x NetworkLayout-set
decompose(N, b, bs) =
let cutset = find cuts(N,b) in
if cutset = { {} } means N is elementary
then ({N}, {})
elsif cutset = {} means N is unbreakable from b
then try to search from another border
if bs = {} then ({}, {N}) no other borders to search from
else let b2 « b2 € bs in
decompose(N, b2, bs | {b2})

end

search from border b2

end
elsif card cutset = 1
then
let
ccut * ccut € cutset,
(N1, N2) = divide(N, ccut)

found one non empty cluster cut

ccut is the found cluster set
divide N into two nets N1 and N2
ccut is defined s.t. N1 becomes elementary
added borders = ..., set of borders added to N2 during division
b2 « b2 € added borders,
(e_ns,u_ns) =
decompose(N2, b2, (bs N borders(N2)) U added borders\, {h2})
in
({N1} Ue_ns, u_ns)
end
found two cluster cuts having one single cut each
see text for explanation of what is then done

else

end
end

find _cuts : NetworkLayout x Secld — ClusterCut-set
find_cuts(N, b) =
let

dir = find_direction_towards_neighbor _of border(b, N),
1 = next_from_linear(b, dir, N) l is the neighbor of b
in
find cuts from linear(l, dir, N)
end,

find _cuts_from linear : Secld x Direction x NetworkLayout — ClusterCut-set
find cuts from linear(l, dir, N) =
let next = next from linear(l, dir, N) in
if is_linear(next, N)
then
if is_border(next, N) then {{}} case 2(a)
elsif has signal(l, dir, N) V has signal(next, opposite direction(dir), N)

next section to visit

then { { (I , next) } } case 2(b)
else no signals between | and next
find_cuts_from_linear(next, dir, N) continue search from next
end

else is_point(next, N), i.e. case 2(c)

further search depends on from which side the point is met:
case get pointend entry given neighbor(next, I, N) of
STEM — find cuts from stem(next, dir, N),
PLUS — find_cuts_from branch(next, dir, PLUS, N),
MINUS — find_cuts_from_branch(next, dir, MINUS, N)
end
end if
end let
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Number of Elements Execution Time in seconds Number of Sub-Nets
Network Linears Points Signals Routes RR-T RSL C++ Elementary
EDL line (DK) 111 39 126 179 22863 219 1,5 68
Leval-Binche (B) 11 4 18 18 91 7 0,5 4
Piéton (B) 26 12 42 48 49813 9 0,5 13
Tramway Line (1) 22 12 20 62 43184 8 0,5 12
Flying Junction 24 16 16 40 62172 9 0,7 16
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Conclusions

Contributions

® a sound and complete method for compositional verification

W

® a library of verified, elementary networks

¢ formally specified and implemented a tool for automated decomposition:

® decomposes a network N into sub-networks Ny, ..., N

® conjecture: if NV is loop-free & no flank protection, Ny, ..., N, are elementary
— no model checking is needed

® experiments: execution time of decomposer is a very small fraction of that for
model checking

y

® prove correctness of the decompose algorithm
® prove the conjecture

® extend decomposer to also handle flank protection

® study the applicability of our approach to other verification frameworks and tools
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